邵逸夫奖基金会6月16日在香港举行新闻发布会,公布了2009年度的“邵逸夫奖”获得者。其中,天文学奖授予美国加州大学总校教授徐遐生(Professor Frank H Shu),表彰他对理论天文学的杰出贡献;生命科学与医学奖平均颁于美国缅因州杰克逊实验室荣休科学家道格拉斯·高尔曼教授(Professor Douglas L Coleman)和美国洛克菲勒大学Marilyn M Simpson讲座教授杰弗理·弗里德曼(Professor Jeffrey M Friedman),表彰他们发现瘦素的研究工作;数学科学奖授予英国伦敦帝国学院皇家学会研究纯粹数学教授及数学科学研究所所长西蒙·唐纳森教授(Professor Simon K Donaldson)和美国哈佛大学William Patschek数学讲座教授克利福·陶布斯(Professor Clifford H Taubes),表彰他们对三维与四维几何学的卓越贡献。 据了解,“邵逸夫奖”成立于2002年,2004年首次颁发。该奖设有天文学、生命科学与医学以及数学科学三个奖项,每个奖项包括奖章和奖状各一,以及奖金一百万美元,今年是“邵逸夫奖”颁发的第六年。“邵逸夫奖”是国际性奖项,得奖者都是在学术及科学研究或应用上获得突破成果,及其成果对人类生活产生深远影响的科学家。
伴随着肥胖逐渐成为一种社会性疾病,对肥胖的研究目前是一个异常热门和活跃的研究领域,几乎每个月都有大大小小的科学新闻,有关肥胖的科学研究是在五十多年前悄然开始的。
五十多年前,研究肥胖的科学家很少,多数人认为脂肪组织似乎仅仅是一个储存脂肪的仓库,没有什么重要功能,同时脂肪细胞的分离培养都非常麻烦,而肥胖也还只属于个人问题。但洛克菲勒大学的Jules Hirsch 教授对脂肪却情有独衷, 如今的脂肪生理学基础主要由他的研究小组完成。他完成了两项困难任务,既估算动物体内脂肪细胞数量的方法,并革新了测定人体每日基础能量消耗的方法。
利用脂肪细胞计数,Hirsch发现个体间的脂肪细胞数量大有差别。譬如,肥胖症患者体内的脂肪细胞数量可以比普通人多十倍,达到足以让人震撼的两千五百亿,并且脂肪细胞的体积也要大四倍。同时Hirsch利用小鼠,发现脂肪细胞的数量主要与幼年时的营养摄入状况有关,而人类与小鼠相似,脂肪细胞数量的增长也主要发生在幼年和童年时期,随着年龄的增长,速度很快下降。但在青春期会有一个反弹,至成年时停止。因此,幼儿和儿童主要通过增加脂肪细胞的数量,来达成体脂含量的增长,而成年人则优先增大脂肪细胞的体积,来容纳涌入身体的油脂,直到难以为继时,才会有新的脂肪细胞生成。
差不多同时,Kenndy在1953年,提出脂肪含量稳恒这个匪夷所思的假说(目前多称为体重调定点假说),他认为成年人体重的大致恒定依赖于脂肪组织分泌的某种因子,在机体储脂过量时通过该因子刺激下丘脑的饱食中枢,可以达到抑制食欲并加强能量消耗的目的。
1958年,Hervey利用联体大鼠这一巧妙的实验设计,发现血液中确实有某种未知激素,通过饱食中枢进行体重控制。他将两只大鼠的动静脉作一定程度的吻合,通过血液的交叉循环,让两只大鼠可以共享血液中的激素,创建了后来在肥胖研究中很有用的联体技术。实验发现,当损伤其中一只大鼠下丘脑的饱食中枢后,该大鼠开始明显多食并逐渐肥胖,而正常大鼠则受到血液中未知激素浓度逐渐升高的影响,其摄食戏剧性的开始减少并同时伴随有体重的下降,直至饿死。
Hirsch研究小组的Leibel,则证实了该假说有关能量消耗的部分。Leibel利用新的能量消耗测量技术,发现体重相同的人,因其达到目标体重的原因不同,其每日的基础能量消耗也大不相同。其顺序为,通过减肥达到目标体重者,基础能量消耗最低,其次为自然体重者,最后是体重增加者,具有最高的基础代谢。这个发现,既是解释体重反弹的主要原因,身体总是希望回到它自己的平衡点。毫无疑问,对很多人而言,这个体重的恒定点是偏高了。虽然我们知道这个恒定点一生都在变动,但目前我们并不十分清楚,通过哪些因素可以使该点上调和下调,但儿童时期的营养状况和体育锻炼这两者,无疑对其有很大的影响。
当Hirsch和Leibel致力于研究脂肪生理学时。1950年,模式动物小鼠的圣地,Jackson实验室的动物饲养员,发现一只体型硕大的小鼠,安静的呆在饲养房的某个角落里。起初研究人员以为它怀孕了,但预料中的分娩却迟迟未到,仔细检查后才发现那是只公鼠!这只小鼠的食欲亢进,但不吃东西时则安静不动,其体重为正常小鼠的3倍,并有糖尿病症状,于是该小鼠被命名为肥胖鼠,简称ob小鼠。ob小鼠的肥胖是可遗传的,表现为隐性模式,经遗传学方法测试,证实其为一个单基因隐性突变所致,这是第一次确认肥胖可以因单个基因缺陷而发生,按惯例该基因就称为肥胖基因(Obese Gene,Ob)。然而不幸的是,这种惯例命名法容易引起误会。因为,拥有肥胖基因正是不肥胖的原因,反之才会引起像ob小鼠那样的遗传性肥胖。由于多数基因在正常状态时,很难知道它们的具体功能,只有当它缺失或者失活后,引起机体的某种病态表现才能被觉察,因此相关的基因即用它丧失时引起的疾病或现象来命名,已经成为传统。所以科学新闻中充斥着,糖尿病基因、老年痴呆基因等等令人畏惧的基因名称。
然而,很长一段时间内针对ob小鼠的研究并不多,因为其纯合体的雌性后代通常不育,导致其育种困难,并且社会对肥胖研究暂时没有太大的兴趣。直到1966年,事情开始发生转变,Jackson实验室的生化学家Douglas Coleman及同事又发现了另外一种肥胖鼠,其肥胖程度仅略低于原来的ob小鼠,但糖尿病症状更加典型,而且对胰岛素无反应。因此,他们给这种老鼠取名为糖尿病鼠,简称为db小鼠。db小鼠引起了研究人员的很大兴趣,因为自班廷发现胰岛素以来(参见本刊2006第5期),医学界开始认识到并非所有的糖尿病都起因于胰岛素的缺乏,糖尿病也因此被进一步细分,非胰岛素缺乏引起的则称为二型糖尿病,而随着肥胖的流行,二型糖尿病患者的数量开始稳步增长,但医学界基本上束手无策,不明了其发生的机制。现在db小鼠的症状与二型糖尿病患者如此相似,简直是研究二型糖尿病的天赐礼物。
Coleman借鉴Hervey的联体实验思路,利用手术将两只小鼠从腹侧面进行联体,在1973年,通过精巧的三组实验,Coleman发现ob与db小鼠虽然表现相似,但发病原因大不相同。首先,正常小鼠与ob小鼠联体后,正常小鼠的食欲无大改变,而ob小鼠的食欲则明显下降,体重也随之下降到正常;但将正常小鼠或ob小鼠与db小鼠联体后,其食欲却会直线下降,直至几乎不进食的程度。若不进行人工干预,最终可导致正常小鼠或ob小鼠饥饿而死,而db小鼠则没有明显改变。Coleman据此推测,小鼠体内应该存在一种神秘的食欲抑制因子——钥匙——以及识别该因子的受体即锁,钥匙开锁后将引起食欲抑制这个生物学效应。ob小鼠缺乏开锁的钥匙,而db小鼠的钥匙很多但锁坏掉了。当ob小鼠获得钥匙后,食欲下降,当从db小鼠获得过多的钥匙打开了太多的锁后,甚至会把自己饿死。这个实验结果,为肥胖研究深入到分子层次指出了一条重要道路。后来Coleman一直致力于寻找ob基因,但直到他1991年退休,也未成功将其捕获。
1979年,后来成功克隆到ob基因的Friedman,刚刚完成住院医生培训,但他由于某个意外在申请专科医生培训时迟了一步,因此必须等待一年,他的老师则介绍他到罗克菲勒大学接受一年的科学研究培训。就是在这里,Friedman开始对肥胖发生了兴趣。那时,科学界一度认为,1928年Ivy和Oldberg,在小肠粘膜提取液中所发现的胆囊收缩素(CCK),可能就是ob小鼠所缺乏的钥匙,因为CCK对食欲确有一定的抑制作用。在罗克菲勒,Friedman参与了CCK基因的克隆研究,一年后,他决定放弃专科医生培训而专心研究ob基因的克隆问题,但他没有分子生物学的背景,实验室都不愿意接受他成为正式成员。于是,Friedman索性申请攻读著名分子生物学家James Darnell的博士。1985年他毕业前,就利用学到的新技术, 为成功克隆到CCK基因作出了贡献。然而CCK基因的位置,与经典遗传学所分析的ob基因,不在同一条染色体上,因此可以确定ob小鼠的肥胖与CCK无关。
Hirsch和Leibel当然认识到ob小鼠的巨大价值,但Leibel缺乏分子生物学研究的基础。1986年,他和刚刚取得博士学位的Friedman一拍即合(Friedman的说法则是他主动去找Leibel合作),决定合作克隆ob基因。然而奋斗了一年,他们毫无进展,为此Leibel将实验室的一位研究生Nathan Bahary送到英国学习最新的染色体微切割法。除了ob小鼠和db小鼠以外,1990年,Friedman还发现了其它三个单基因突变致肥胖的小鼠品系,分别命名为fat、tubby和obese yellow。但ob小鼠始终是研究的核心,在Bahary的协助下,1992年,他们终于将ob基因定位在了六号染色体的两个遗传标记之间,但这两个遗传标记之间含有约220万个碱基,要在其中找到ob基因并非易事。
这时候,复旦大学毕业,在纽约大学获得博士学位的张一影来到了Friedman的实验室,张一影利用两项新技术,逐步缩小ob基因的存在范围,从200个基因到4个基因,最终在1994年5月,成功克隆到长约4.5kb的ob基因。此后进行了相应的基因测序,以及蛋白质的序列预测,此项成果发表在1994年12月1号出版的《Nature》 |